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Phenotyping and Understanding Multimorbidity
Miguel Froes

Abstract—This paper proposes an information processing pipeline for phenotype data extraction and multimorbidity analysis. The
pipeline consists of an Extract, Transform, and Load (ETL) process that is applied to Electronic Health Record (EHR) data, collecting it
in an Observable Clinical Data Repository (CDR). The CDR organizes information, in a unified structured manner, and supports a
subsequent multimorbidity analysis. Multimorbidity, as the co-occurrence of two or more chronic conditions, has serious implications on
individuals and healthcare systems, and its prevalence is expected to increase in future generations. However, few resources are
invested in tools to identify (i.e., phenotype) and characterize patients with multimorbidity. EHRs could play an important role in better
understanding multimorbidity. With this pipeline, three studies were developed: (i) Development and evaluation of a Natural Language
Processing (NLP) model to process full-text contents of MIMIC-III discharge summaries, for identifying chronic conditions. The model
was evaluated using human-assigned ICD-9 diagnostic codes and manually reviewed labels, having achieved averaged F1-scores of
0.93 and 0.97, respectively; (ii) Assessment of the impact and increased risks associated with multimorbidity in the COVID-19 infected
population on the Portuguese SINAVE database. Findings showed that multimorbidity is significantly associated with poor outcomes in
this population; (iii) Study on the patterns and temporal evolution of multimorbidity in clinical patient timelines on the Enroll-HD dataset.
Clear relationships between chronic conditions, namely hypertension, dyslipidemia, and diabetes were detected. However, these
should be seen with some degree of reservation because of the dataset used.

Index Terms—Multimorbidity, Electronic Health Records, Electronic Phenotyping, Natural Language Processing
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1 INTRODUCTION

MULTIMORBIDITY is defined by Van den Akker et al.
(1998) as the presence of two or more co-occurring

chronic conditions, and has serious implications on indi-
viduals and healthcare systems. Due to an increase in life
expectancy, prevalence of chronic conditions, and conse-
quently multimorbidity, is set to rise. Correctly character-
ising patients according to their single, or co-occurrent,
chronic conditions is the first step on understanding how
to tackle multimorbidity. Identifying a patient’s specific
conditions or outcomes is known as phenotyping. A correct
recognition of a patient’s phenotype, and correspondent
analysis, can bring several advantages to all steps of the
healthcare process, such as identifying treatment pathways
optimised for a specific subset of patients affected by a
specific combination of chronic diseases.

The Electronic Health Record (EHR) is the standard
for managing patient information, containing both struc-
tured and unstructured data. Structured data includes de-
mographics, diagnosis codes, procedure codes, lab values,
and medication exposures, whereas unstructured data in-
cludes progress notes, discharge summaries, and imaging or
pathology reports. The EHR is the cornerstone for conduct-
ing a phenotyping process. However, according to Banda
et al. (2018), due to the diverse nature of EHR data, ac-
curately characterizing patients according to their chronic
conditions still remains a challenge. Most of the structured
information that results from a patient-doctor interaction is
focused on the disease that caused the visit and has ad-
ministrative purposes. The majority of crucial information
for EHR-based phenotyping is, on the other hand, stored
in the form of clinical notes. It is, therefore, of the highest
importance to study how this information can be extracted
and treated so that clinical records can be truly utilised,
patients correctly characterised, and treatments precisely
customised and applied.

Fig. 1: Proposed pipeline to analyse multimorbidity.

Several methodologies have been developed and applied
to identify and characterise patients with chronic conditions,
but very few consider the presence and interactions of
different conditions. I propose the usage of an information
processing pipeline, represented in Figure 1, for phenotype
data extraction and multimorbidity analysis.

The first stage of the pipeline uses both structured and
unstructured data from the EHR. An Extract, Transform, and
Load (ETL) process is applied to handle the different types
of data in the EHR.

The structured data is selected based on diagnostic and
procedures codes, following the International Classifica-
tion of Diseases (ICD) system, lab results, and medication
prescribed. This selection is focused on detecting certain
chronic diseases and uses previous developed algorithms
presented by Tonelli et al. (2015) and Hvidberg et al. (2016).
The extraction of structured data, especially ICD codes, is
mainly focused on validating future results obtained from
the treatment of unstructured data.

The value of unstructured text data in the EHR supplants
the contribution from structured data. The main focus of
this ETL process is the extraction of phenotypes from clin-
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ical notes using Natural Language Processing (NLP) tech-
niques. First study: an NLP algorithm that processes full-
text contents of discharge summaries, capable of identifying
different chronic conditions while detecting cases of disease
negation.

Data produced by the ETL process is collected in an Ob-
servable Clinical Data Repository (CDR). The CDR consoli-
dates data obtained from the previous step and presents it
in a unified structured manner, independently of its original
source. The repository is a necessary bridge between the two
processes presented in Figure 1. It organizes information
and supports a subsequent analysis whit respect to multi-
morbidity. Besides the information selected from the EHR
structured data, this CDR also contains pertinent data, such
as chronic disease’s onsets, history of hospitalizations and
Intensive Care Unit (ICU) admission, and date and cause of
death.

With organised and uniform data, in the form of the
CDR, it is possible to move to the last presented process
of the pipeline. The last step corresponds to the analysis
of the collected and treated data with particular focus on
the topic of multimorbidity. This analysis focus on com-
prehending the impacts of multimorbidity in the quality
of life and, ultimately, identifying specific patient cohorts
and possible specified treatment pathways. Understanding
multimorbidity is paramount when taken into account its
increased prevalence in older age groups in combination
with the rise of life expectancy of our current generation.

The second study seeks to understand the impact and
increased risks associated with multimorbidity on the differ-
ent outcomes – Death, Hospitalization, and ICU admission
– on the COVID-19 infected Portuguese population. This
enables to understand how COVID-19 interacts with chronic
diseases and what added risks exist associated with the
increased number of co-occurrent chronic conditions.

The third and last study focus on understanding the pat-
terns and temporal evolution of multimorbidity in clinical
patient timelines. Chronic diseases’ onsets in combination
with prescription history are used to to find possible rela-
tions in the order of diagnosis of the conditions, and the
time interval between onsets.

The rest of this article is organised as follows. Section
2 surveys important concepts on multimorbidity analysis,
and previous related work on EHR-based phenotyping,
specifically, on natural language processing methodologies
applied on clinical notes. Section 3 details the proposed
approach considered for solving the problem of extracting
information from clinical notes. Section 4 focus on the
proposed study related with understanding the impact of
multimorbidity in the outcomes of a population affected by
a life-threatening infection. Section 5 presents the experi-
mental evaluation of the proposed method to comprehend
how multimorbidity evolves throughout a lifetime, and how
certain chronic conditions can impact the predisposition
to the onset of other diseases. At last, Section 6 outlines
the main conclusions and possible developments for future
work.

2 CONCEPTS AND RELATED WORK

This section provides an overview on the topic of multimor-
bidity, presenting previous work focusing on multimorbid-

ity analysis, and describes fundamental concepts on EHR-
based phenotyping and a related work revision.

2.1 Multimorbidity
Understanding the risk factors and consequences of multi-
morbidity, at both an individual and healthcare system level,
is essential to properly act on them. The most consistent risk
factor is ageing, but the prevalence of multimorbidity does
not exclusively affect the elderly. Van den Akker et al. (1998)
identified cases of multimorbidity in all age groups in a gen-
eral practice setting, although prevalence of multimorbidity
increased with age. This significant prevalence in low aged
groups underlines the importance of identifying additional
predisposing factors for multimorbidity. In the Finnish pop-
ulation, Wikström et al. (2015) identified smoking, physical
inactivity, body mass index (BMI), hypertension, and low
education as risk factors for a disease-free population.

The severity of the consequences of multimorbidity can
vary. Fortin et al. (2004) showed an inverse relationship
between all domains of quality of life (e.g., physical, psy-
chological, and social) and multimorbidity. Additionally,
multimorbidity is related with an increase of the number
of interactions between a patient and healthcare providers.
Ultimately, Menotti et al. (2001) associates people with mul-
timorbidity to higher risks of premature death.

A patient-centred healthcare model should integrate pa-
tient cohort identification (i.e., phenotyping) tools, to ac-
curately identify high risk multimorbidity patient groups,
and a wider understanding of interactions between chronic
diseases. Several studies have been focused on phenotyping
techniques, but researches have usually focused on specific
cohorts of patients.

2.2 Electronic Phenotyping
The EHR is a key health Information Technology (IT) com-
ponent in modern healthcare. Besides allowing the record-
ing of a patient’s medical history, diagnoses, medications,
and laboratory/test results, it can also be integrated with
evidence-based tools and used on the decision-making pro-
cess. EHRs contain both structured (e.g., diagnosis codes,
laboratory results, medications) and unstructured (e.g., ra-
diology reports, discharge summaries, progress notes) data.

One of the major steps in utilizing these EHRs, and
the most significant to this article, is the process of phe-
notyping patients. There is no standard tool for electronic
phenotyping that is easily available for use across insti-
tutions, and there are several barriers to the adoption of
one such tool. Shivade et al. (2014) pointed administrative
roadblocks, collaboration running costs, and the sensitive
nature of patient data as the primary reasons for the lack of
cooperation between institutions to create a standard phe-
notyping technique, which would allow for faster and easily
comparable phenotypes. This results in most institutions
ending up creating their own systems tailored to their needs.

The broader notion of phenotype is normally associated
with genotype (i.e, genetic constitution of an individual
organism). A phenotype is used to refer to the set of ob-
servable characteristics of an individual that result from
the interaction of its genotype with the environment. Most
electronic phenotyping methods associate phenotypes to the
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diseases/conditions that afflict a certain population; how-
ever, phenotypes can also be representative of exposure (i.e.,
medications prescribed, smoking status, BMI) and outcome
criteria (i.e., death, hospitalization).

2.3 Electronic Phenotyping Methods
A large variety of studies have been developed to tackle the
challenge of identifying patient cohorts using all types of
EHR data. Banda et al. (2018) identified as primary systems
for electronic phenotyping three different approaches: Rule-
based, Natural Language Processing (NLP), and Machine
Learning (ML). Rule-based and ML systems are considered
to belong to the family of administrative phenotyping al-
gorithms (i.e., algorithms that use structured data collected
from statistics extracted from EHRs). On the other hand,
NLP methods are considered to be all methods, either rule-
based or using ML, that at some point extract information
from clinical texts to obtain patients’ phenotypes.

2.3.1 Rule-Based Methods
Rule-based methods are the traditional approach to EHR-
based phenotyping. They normally require clinicians to
specify certain criteria for inclusion and exclusion. These
methods have a widespread use and can achieve robust
results. Shivade et al. (2014) pointed out that rule-based
systems commonly used diagnosis codes and patient de-
mographics as primary data sources. However, other struc-
tured data elements can be used in these methods, such as
electronic prescriptions, lab measurements, and procedure
codes.

Several studies have been dedicated to the development
of rule-based algorithms to characterize specific diseases.
Highly prevalent and chronic diseases are usually the main
focus of these studies as they have a greater impact on
health. Martucci et al. (2013) built a rule-based classifier for
Chronic Obstructive Pulmonary Disease (COPD) identifica-
tion that required the presence of three or more ICD codes.
Both Franchini et al. (2018) and Tison et al. (2017) developed
algorithms for identifying Heart Failure (HF). In the first
case, Franchini et al. (2018) proposed the CARPEDIEM al-
gorithm which used ICD-9 codes and drug prescriptions as
markers of HF. Regarding Tison et al. (2017), their algorithm
considered elevated NT-proBNP lab results as an additional
marker of HF, having achieved results agreeing with those
of the CARPEDIEM method.

Overall, rule-based systems are fairly easy and fast to
implement, especially considering limited datasets. How-
ever, most of these systems are never properly validated,
as they are only used in a specific dataset and never shared
throughout different health care settings (i.e., tested on other
datasets apart from the one which they were created on).
Also, rule-based phenotyping methods can be limited by
the complexity of the phenotypes under analysis, and by
the level of standardization of the datasets used.

2.3.2 Machine Learning Methods
ML has been embraced by the field of biomedical infor-
matics for a variety of tasks. These methods were recently
adopted for computational phenotyping due to their high
accuracy and scalability. ML approaches represent each

patient as a vector of features, and they can be divided
in three major categories (i.e., supervised, semi-supervised,
and unsupervised). All machine learning methods require
training in order to achieve results. The training data is
said to be labeled when it has the correct answers attached
to it. Classical statistical machine learning methods, manly
supervised ones, are commonly used in phenotyping due
to their capacity to provide confidence estimates on the
obtained classification.

Supervised learning algorithms require labelling of each
sample in the training set. According to Zeng et al. (2019),
logistic regression, Bayesian networks, and Support Vector
Machine (SVM) classifiers are among the most popular su-
pervised statistical machine learning methods used in elec-
tronic phenotyping. Shao et al. (2019) used a logistic regres-
sion model, developed to detect probable dementia cases
in patients without a dementia-related diagnosis. Figueroa
and Flores (2016) presented a method for automatic identi-
fication of obesity and categorization of obesity status (i.e.,
super obesity, morbid obesity, severe obesity, or moderate
obesity). They used and compared Naı̈ve Bayes and SVM
models to evaluate the performance of each approach.

Unsupervised learning, in contrast with supervised
learning, is able to automatically predict labels from un-
labeled samples by clustering samples with similar pat-
terns into groups. This eliminates the need for the time-
consuming and labor-intensive task of labeling clinical data.
One example of unsupervised learning applied to compu-
tational phenotyping is the work of Roque et al. (2011)
which represented patients’ profiles as vectors of ICD-10
codes. The cosine similarity (i.e., a measure of similarity
between two non-zero vectors of an inner product space)
scores between pairs of vectors was used as distance metric,
and hierarchical clustering (i.e., grouping of similar objects
into clusters) allowed for the identification of 26 clusters
within 2, 584 patients.

2.3.3 Natural Language Processing Methods
Clinical narratives present the main source of information
for a correct phenotyping process, as well as the great-
est challenge. NLP allows one to extract knowledge from
unstructured text in a high-throughput way. The earliest
methods consisted on pattern-matching against standard
vocabularies. More recently, most NLP techniques focus on
analysing the semantic relationships within text. NLP-based
algorithms have become crucial for electronic phenotyping.
These methods can either consist of rule-based or ML ap-
proaches, supervised and unsupervised.

When integrating rule-based systems with NLP tech-
niques, keyword search and term extraction are the least
complex and easily implemented algorithms for computa-
tional phenotyping. More complex NLP systems use seman-
tics to identify the context of certain detected concepts. Se-
mantics studies the meaning or relationship between words
or set of words. The use of NLP systems that consider
semantics allows for detecting uncertainty, negation, and
parsing temporal relationships. Detecting negations and
uncertainties of concepts in clinical text can significantly im-
prove the precision and recall of the phenotyping algorithm.

With keyword search systems, algorithms use keywords,
derivations of keywords, or a combination of keywords to
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identify phenotypes. Keywords can be related to, for exam-
ple, prescribed medications, diagnostics, procedures, family
history, or demographic data. Nath et al. (2016) created an
NLP-based approach, named EchoInfer, to analyse echocar-
diography reports. EchoInfer used regular expressions and
specific keywords to extracted information regarding valvu-
lar heart disease.

Regarding term extraction, most studies use tools that
map textual elements and obtain the corresponding Unified
Medical Language System (UMLS) concepts. Nguyen et al.
(2010) developed a classification system able to identify lung
cancer stages using textual information. To achieve this, they
used a medical text extraction system, named MEDTEX, that
mapped Systematised Nomenclature of Medicine Clinical
Terms (SNOMED-CT) concepts from free-text, while also
identifying negation and possibility phrases.

Several studies that check the presence or absence of a
finding or disease mentioned in text use NegEx as a com-
plement to their own algorithm (i.e., a system developed
by Chapman et al. (2002), which uses regular expressions
to search negation terms on the vicinity of the findings or
disease mentions). This algorithm, despite being extremely
simple, performs reasonably well.

More recently, with the integration of ML methods and
specifically neural network models, several NLP techniques
have been developed with very promising results. In the
clinical domain, Wu et al. (2019) identify word embeddings
and Recurrent Neural Network (RNNs) as the state-of-the-
art models used for natural language processing. Word
embeddings are a representation of a document vocabulary,
capable of capturing several textual attributes e.g., word
context, as well as semantic and syntactic similarity. These
embeddings are used as input for neural networks models.
RNNs, as the name indicates, are neural networks that
repeat themselves over time. These are a class of artificial
neural networks that consider all inputs and outputs as
dependent of each other. As noted by Kwak and Hui (2019),
RNNs are specialised for time-series data and natural lan-
guage, due to their ability to memorize previous inputs and
capture longer dependencies than those obtained with alter-
native sequential models, such as hidden Markov models.

In summary, NLP techniques add a great value to the
task of electronic phenotyping by taking advantage of in-
formation stored in unstructured data, which has been tra-
ditionally neglected. Combining structured data with NLP
yields significant benefits to both rule-based and ML pheno-
typing algorithms. The ability of being used to directly rec-
ognize phenotypes or to derive features, for ML approaches,
strengthens the position of NLP as a cornerstone to the
current and future electronic phenotyping toolkit.

3 MULTIMORBIDITY INFORMATION EXTRACTION

This section presents an electronic phenotyping study de-
veloped for extracting information from clinical notes. This
study was originally planned for processing a dataset from
Hospital da Luz. Due to the current COVID-19 pandemic,
the necessary treatment and anonymisation of the data was
not made available. I have used, as an alternative, the
MIMIC-III Critical Care Database, from Johnson et al. (2016),
to develop and test the method.

MIMIC-III is a relational database containing 26 different
data tables regarding patients who stayed within the ICU
at Beth Israel Deaconess Medical Center from June 2001 to
October 2012. For this work, only 8 tables were needed to
test and evaluate the created Multimorbidity Information
Extraction (MIE) tool.

3.1 Electronic Phenotyping Methodology
Using tables that gather structured data, I have extracted
all the relevant MIMIC-III information to characterise the
dataset. This included information regarding a patients’ age,
gender, mortality, and number of admissions, as well as
previous diagnoses. Table 1 presents the statistical profile
of the dataset before and after the selection process. The
chronic conditions were detected using rules, inspired by
those from Hvidberg et al. (2016) and Tonelli et al. (2015),
on structured data (i.e., diagnostic and procedure codes,
medications, lab results).

The selection process consisted of filtering the popula-
tion according to the category of clinical narratives. There
were a total of 2, 083, 180 instances, distributed over 15
different categories, of clinical narratives (e.g., nursing,
physician notes, radiology, discharge summaries, nutrition,
social work). I have considered that only three categories
(i.e., nursing, physician notes, discharge summaries) were
enough to gather all relevant information for phenotyping,
while reducing the total number of instances analysed.
These categories result from direct contact between patient
and care provider and summarised information from differ-
ent sources (e.g., radiology reports, pharmacy reports). This
selection process reduced the number of clinical narratives
to 391, 031.

To perform the extraction of information from the
MIMIC-III dataset, I developed an information extraction
pipeline. The MIE tool takes as input the selected clinical
reports and outputs labels for the presence or absence of the
12 chosen phenotypes. The tool incorporates methods for
identifying negated findings using regular expressions, tak-
ing inspiration from previous work on NegEx by Chapman
et al. (2002). The NLP pipeline has the following steps:

1) Newline control characters from the clinical notes
are removed;

2) Reports are split into sentences according to the
presence of full stops (i.e., ”.”);

3) Each sentence is matched for keywords associated
with each of the phenotypes. The keywords were
chosen based on previous studies, which used key-
word mentions to identify patients afflicted with
the chosen conditions. The lists also include, for
each disease, the most popular abbreviations and
synonyms for the main medical terms;

Fig. 2: Negation finding process on example sentence.
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TABLE 1: Statistical characterization of the original MIMIC-III dataset and after pre-processing.

Original Selected
Total Diseased Total Diseased

Number of patients 46 520 33 116 41 314 32 407
Number of male patients 26 121 18 803 23 306 18 408
Number of female patients 20 399 14 313 18 008 13 999
Number of admissions 58 976 44 848 53 691 44 132
Atrial Fibrillation prevalence 22.68% 31.86% 25.08% 31.97%
Chronic Kidney Disease prevalence 26.42% 37.12% 29.19% 37.21%
Chronic Obstructive Pulmonary Disease prevalence 13.98% 19.64% 15.46% 19.71%
Deafness/Hearing Loss prevalence 0.45% 0.63% 0.50% 0.64%
Dementia prevalence 4.01% 5.63% 4.40% 5.61%
Diabetes prevalence 22.41% 31.49% 24.76% 31.56%
Dyslipidemia prevalence 36.88% 51.81% 40.90% 52.14%
Heart Failure prevalence 24.09% 33.84% 26.74% 34.09%
Hypertension prevalence 47.08% 66.14% 52.00% 66.29%
Ischemic Cardiomyopathy prevalence 29.42% 41.33% 32.60% 41.56%
Obesity prevalence 4.87% 6.85% 5.44% 6.93%
Osteoarthritis prevalence 2.74% 3.85% 3.05% 3.88%
Percentage of diseased patients (> 1 morbidity) 71.19% 100% 78.44% 100%
Percentage of patients with multimorbidity (> 2 morbidity) 58.65% 82.38% 64.75% 82.55%

TABLE 2: Negation phrases used in the negation finding
part of the proposed NLP method.

Negation phrase

Pre-match

no; not; absence of; declined; denies; denying;
did not exhibit; no sign of; no signs of;

not demonstrated; patient was not; rules out;
ruled out; doubt; negative for; no cause of;
no complaints of; no evidence of; without;

without indication of; without sign of;
no further; without any further; without further

Post-match was declined; unlikely; ruled out; was denied;
was absent; not present

4) Matched sentences are cleaned of unnecessary char-
acters (i.e., punctuation, symbols);

5) Matched sentences are divided into two separate
segments. The pre-match and post-match, each in-
cluding all the words occurring before and after the
matched keyword in the original sentence, respec-
tively. Figure 2 shows how the negation finding part
of the algorithm works on a sentence;

6) Inspired by Chapman et al. (2002), the pre- and
post-match sentences are searched, within a 6 word
window, for expressions used to negate the men-
tioned keyword. Table 2 shows the negation phrases
used to assert the negation of a keyword mention,
depending on their position relative to the matched
keyword;

7) For each identified disease, a corresponding label is
assigned to the reports.

3.2 Evaluation
To evaluate the proposed NLP method, for inferring phe-
notypes from clinical notes, the true ICD-9 diagnostic codes
assigned in the MIMIC-III dataset were compared to the
algorithm’s assertion regarding the presence of a corre-
sponding disease. A true positive case was considered when
the disease identified by the algorithm had an associated
ICD-9 code throughout the patient’s history. I have ob-
tained measurements of Precision, Recall, and F1-score for
each disease. Table 3 presents the performance, for each

chronic condition in analysis, of the method developed in
this project and methods developed in similar studies.

3.3 Discussion
The proposed phenotyping method is capable of achieving
good results, for most of the diseases under analysis. Inde-
pendently of the condition studied, the values of Recall are
always above 90%. This is due to the fact that the algorithm
predicts mostly positive cases of keyword mentions, which
increases the number of true positives. Regarding Precision,
some diseases show significantly lower values than others.

To evaluate the performance of the NLP method used on
each disease we can also look at results obtained in similar
studies. I have searched for studies that used EHR data,
preferably clinical notes, to identify patients with one or
more of the chronic conditions studied. Unfortunately, none
of the studies considered evaluated the MIMIC-III dataset,
hence results are not directly comparable. Table 3 presents
the performance, for each chronic condition in analysis, of
the method developed in this thesis and methods developed
in similar studies. Deafness and Osteoarthritis were the
only conditions for which we found no study dedicated
to its phenotyping. This is representative of the level of
importance given to this condition, easily seen in Table 1
by the low prevalence in the studied population.

For some of chosen chronic conditions no studies were
found that made use of clinical narratives, and employed
NLP methods, to phenotype them. Despite this, to obtain
some validation data, I am still presenting the performance
results of studies that only used structured data for pheno-
typing.

One major characteristic of the proposed NLP method
is its ability to identify negated findings. Therefore, it is
important to evaluate its overall results against a similar
algorithm. NegEx, developed by Chapman et al. (2002), was
the chosen algorithm for this purpose, having been used as
inspiration for the pipeline that was created. In Chapman
et al. (2002), NegEx achieved a precision of 84.5% and a
recall of 77.8% on the task of identifying whether a findings
or disease mentioned within a clinical narrative is present
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TABLE 3: Performance metrics and number of analysed instances, for each disease, of methods developed in this thesis
(first row of each group of rows) and in related work. Deafness not include due to no term of comparison. *Study not using
NLP methods and clinical narratives.

Performance
Instances Precision Recall F1-score

Atrial Fibrillation 173,562 95.62 98.92 97.24
Wei et al. (2016) 1,732 72.00 3.00 7.00
CKD 38,743 97.85 99.46 98.65
Winkelmayer et al. (2005)* 1,852 91.60 20.7 33.77
COPD 76,986 85.88 98.92 91.94
Martucci et al. (2013) 200 86.50 97.00 91.00
Dementia 24,973 45.78 99.37 62.68
Shao et al. (2019) 1,861 N/A 82.50 N/A
Diabetes 132,499 91.07 98.86 94.81

Wei et al. (2016) T1DM: 18,380
T2DM: 29,171

T1DM: 12.00
T2DM: 68.00

T1DM: 12.00
T2DM: 21.00

T1DM: 12.00
T2DM: 32.00

Dyslipidemia 45,178 82.46 99.69 90.26
Oake et al. (2017)* 4,400 100 94.00 96.91
Heart Failure 138,216 92.47 97.88 95.10
Byrd et al. (2017) 1,492 92.52 89.68 91.08
Hypertension 248,901 89.73 99.37 94.31
Teixeira et al. (2017) 631 95.20 90.2 92.63
Ischemic Cardiomyopathy 26,406 91.27 97.23 94.16
Ivers et al. (2011) 969 91.30 72.40 80.76
Obesity 53,512 53.39 93.05 67.85
Figueroa and Flores (2016) 3,015 UNK UNK 78.30

or absent. By micro-averaging of the performance metrics,
the overall precision and recall of the proposed method
were 87.2% and 98.7%, respectively. Despite showing better
results than NegEx, it is not reasonable to conclude that this
project’s method is superior to that of Chapman et al. (2002).
It is very important to state that NegEx does not narrow
its search to 12 chronic conditions, but instead to all UMLS
terms identified in the text. Additionally, NegEx is evaluated
against annotated records and tested in a dataset where half
of the matched sentences contain negation phrases. This is
not the case of the MIMIC-III dataset, where the percentage
of instances containing negation phrases is way lower than
50%. Having said that, the method reported on this article is
able to identify negated findings, but has not been properly
evaluated on its ability to do so. It would be interesting to
evaluate this method on a dataset similar to that used by
NegEx.

4 COMPARISON OF MULTIMORBIDITY IN COVID-
19 INFECTED AND GENERAL POPULATION IN POR-
TUGAL

This study was developed in the special context of the
COVID-19 pandemic and was published in MedRxiv (see
Froes et al. (2020)). Since its release, a lot more studies,
focusing on the impacts of COVID-19, were developed that
might invalidate some of the statements made.

4.1 Dataset Description and Methodology

This study evaluates the prevalence of multimorbidity and
age-adjusted risk of hospitalization, ICU admission, and
death, in the Portuguese population from official data,

based on a dataset 1 extracted from National Epidemiologi-
cal Surveillance System (SINAVE) containing all confirmed
cases of COVID-19 infection, in Portugal, by June 30, 2020.

The sample population consists of all the Portuguese
population with SARS-CoV-2 confirmed infection, as no-
tified by clinician. A broad range of clinical and demo-
graphic variables are present in this dataset. In this study,
variables corresponding to age, gender, hospital admission,
admission in intensive care unit, mortality, and patient’s
underlying conditions were used.

Chronic conditions were originally provided as categor-
ical variables on the presence, absence, or unknown status
of the following conditions: (1) Asthma; (2) Malignancy; (3)
Chronic hematological disorder; (4) Diabetes; (5) HIV/other
immune deficiency; (6) Renal disease; (7) Liver disease;
(8) Chronic lung disease; (9) Neuromuscular/Neurological
disorder.

A field containing raw textual input from doctors was
also taken into account, to better complement the cases
where the chronic conditions were left as unknown. This al-
ternative information was very useful, particularly on what
regards cardiovascular disorders (including hypertension
and other cardiovascular diseases), which were not included
in the dataset as a categorical variable and could, therefore,
not be detected if not for the raw input.

A text mining script, using keywords associated with all
the previously mentioned conditions, was created to better
capture the prevalence of the diseases and to detect cases of
cardiovascular disorders. The keywords were chosen, based
on an empirical analysis of the textual field, in order to cover
different cases, considering misspellings or abbreviations.
The following keywords (in Portuguese) were used, in con-

1. https://covid19.min-saude.pt/disponibilizacao-de-dados/
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nection to each of the diseases that was considered in the
study:

• Asthma: asma;
• Malignancy: neo, cancro, carcinoma, linfoma;
• Cardiovascular disorders (including hypertension

and other cardiovascular diseases): cardio, cárdio,
miocar, cardia, cardı́a, hta, auricular, arterial, venosa;

• Chronic hematological disorder: hematológica;
• Diabetes: diabetes, DM;
• HIV/other immune deficiency: hiv, vih;
• Renal disease: renal;
• Liver disease: hepatomegalia;
• Chronic lung disease: dpoc, pulmonar;
• Neuromuscular/Neurological disorder: alz, parkin-

son, epilepsia.

4.2 Results
The overall sample contained 36, 244 adult patient cases,
with women being more prevalent (56.66%). Among the
cases, 18.79% had at least one chronic condition. Cardio-
vascular disorder was the most commonly reported condi-
tion, present in 43.33% of the patients with any morbidity.
Table 4 shows the reported prevalence of different chronic
conditions in the studied population. Multimorbidity, as
previously defined, was present in 6.77% of the cases.
Figure 3 plots the prevalence of multimorbidity by age
group for the COVID-19 infected hospitalised population.
To analyze the Odd Ratio and prevalence of co-occurring
pairs of chronic diseases, people with unknown disease
prevalence were excluded, which resulted in a population
of 33, 283 adult patients. Additionally, Figure 4 presents the
25 most common, single and co-occurring, chronic health
conditions.

Data regarding hospitalization and ICU admission was
available for only 32, 945 patients (90.90% of the overall
study population). Within this population, hospitalization
occurred in 12.89% of the patients, with a male predomi-
nance (50.66%), and ICU admission was required for 4.11%

Fig. 3: Prevalence of multimorbidity by age group for the
COVID-19 infected Portuguese hospitalised population. The
lighter shade of blue is representative of the absence of
conditions and the black line represents the prevalence of
multimorbidity.

Fig. 4: UpSet plot of the 25 most common, single and
co-occurring, chronic health conditions in the COVID-19
infected population.

of the patients, with a female predominance (51.73%). Ob-
served mortality was 3.19%. All chronic conditions, except
for asthma, were associated with increased risk of mortality
and hospitalization. Age, diabetes, renal disease, lung dis-
ease, and neuromuscular disorders, were all associated with
increased risk of ICU admission. Additionally, every addi-
tional chronic condition increases the risk for the patients
of the composite outcome of death, hospitalization, or ICU
admission, by 123.3% (OR 2.22; CI 95%: 2.13− 2.32).

4.3 Discussion

This study shows that multimorbidity is significantly as-
sociated with adverse outcomes for COVID-19 infection in
the Portuguese population, independently from age. All
chronic conditions, except asthma, lead to increased risk
of hospitalization. However, only diabetes, chronic kidney
disease, chronic respiratory diseases, and neuromuscular
disorders, are associated with more severe cases requiring
ICU admission. Although the strength of association differs
between diseases, every additional morbidity leads to an
increased risk of the composite outcome of hospitalization,
ICU admission, and mortality.

Multimorbidity was previously studied by Laires and
Perelman (2019) for the general Portuguese population.
Although only individuals aged 25 − 79 were included in
the study from 2014, the choice of individuals constitutes
a robust sample for the study of morbidity prevalence in
Portugal. In both studies it is possible to observe a rise
in chronic health conditions with increasing age. However,
multimorbidity is much less prevalent in the COVID-19
study population (6.77% vs 43.9%). The studies also differ
in maximum number of co-occurring conditions (i.e., 5 co-
occurring disorders in the COVID-19 infected population
vs 10 in the general population). Since the total number of
conditions considered in both datasets is not so different
(COVID-19: 10 diseases; INS: 13 diseases), a possible expla-
nation for the higher number of co-occurring conditions in
the INS population can be the combination of self-diagnoses
with the presence of more subjective disorders, such as lower
and upper back pain, allergies, depression, and urinary
incontinence.
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TABLE 4: Percentage of COVID-19 infected total Portuguese population affected by each comorbidity.

Asthma Cancer Cardiovascular
Disorders Diabetes Hematological

Disorder HIV Renal
Disease

Liver
Disease

Lung
Disease

Neuromuscular
Disorder

Population (%) 2.10 2.68 8.14 5.92 0.89 0.60 2.09 0.57 2.18 3.09

This study has several important limitations. First of all,
the cross-sectional nature of the COVID-19 dataset makes
it impossible to account for incomplete outcomes, since
several patients could ultimately be hospitalised or die
after the end of observation. Reported data on outcomes
may, therefore, be underestimated, so careful interpretation
is advised until more data is available. More importantly,
despite the fact that no standard set of conditions is es-
tablished to define multimorbidity, chronic conditions were
given on broad groups and there is no specific information
on individual conditions. Therefore, measured morbidities
may herald heterogeneous groups of diseases with different
degrees of severity, which may influence outcomes. Another
important concern is related to the risk of under-reporting,
which becomes obvious by analyzing reported cardiovascu-
lar disorders. According to Polonia et al. (2014), cardiovas-
cular diseases, particularly hypertension, are very prevalent
in the Portuguese population. The observed prevalence of
8.14% in the COVID-19 study population highly suggests
that under-reporting may have occurred.

Although it is acknowledge that the DGS/SINAVE
dataset was not primarily generated for research, but rather
for public health proceedings and government information,
it is believe that a better user interface design and a more
rational set of chronic conditions could effortlessly improve
the quality of the recorded data.

5 ANALYSIS ON THE TEMPORAL EVOLUTION OF
CHRONIC CONDITIONS AND THEIR ONSETS

This section presents a study developed for understanding
the temporal evolution of patients with multimorbidity and
possible relationships between chronic conditions’ onsets.
To achieve this, I have used the Enroll-HD 2 dataset, a
clinical research platform and longitudinal observational
study for Huntington’s disease (HD) families intended to
accelerate progress towards therapeutics.

5.1 Data Selection and Analysis
The Enroll-HD database gathers information about 15, 300
participants. Participants with no information regarding
the onset of a condition were excluded. This reduced the
number of participants to 12, 759, henceforward considered
as the original database.

There are 4, 492 distinct conditions identified in the
database. To simplify, I have only considered the chronic
conditions used in Section 3. These chronic conditions were
identified using rules on the presence of associated ICD-10
diagnostic codes.

The study population is considered to be any participant
identified has currently having at least one of the selected
chronic conditions determined. Table 5 presents the statisti-
cal profile of the original and study populations.

2. https://www.enroll-hd.org/acknowledgments/

TABLE 5: Statistical characterization of the original Enroll-
HD population and study population.

Original Study
Total Diseased Total

Number of participants 12 759 3 768 4 097
Number of male participants 5 553 1 808 1 947
Number of female participants 7 206 1 960 2 127

Atrial Fibrillation prevalence 0.87% 2.95% 2.22%
Chronic Kidney Disease prevalence 0.43% 1.46% 0.95%
Chronic Obstructive Pulmonary Disease prevalence 0.85% 2.89% 2.81%
Deafness/Hearing Loss prevalence 1.69% 5.71% 5.00%
Dementia prevalence 0.50% 1.70% 4.32%
Diabetes prevalence 4.73% 16.03% 15.11%
Dyslipidemia prevalence 11.87% 40.21% 34.61%
Heart Failure prevalence 0.30% 1.01% 1.17%
Hypertension prevalence 16.76% 56.74% 58.80%
Ischemic Cardiomyopathy prevalence 0.49% 1.67% 2.12%
Obesity prevalence 0.81% 2.73% 2.37%
Osteoarthritis prevalence 2.83% 9.58% 16.11%

Percentage of diseased participants (> 1 morbidity) 29.53% 100% 100%

Percentage of participants with multimorbidity (> 2 morbidity) 9.45% 32.01% 33.02%

5.2 Temporal Evolution Analysis

For all participants in the study population, I have created
a timeline of their chronic conditions’ onsets. To allow com-
parison between participants, each timeline was offset so
that time-zero corresponds to the onset of the first condition
identified. Figure 5 shows the prevalence of each disease
according to their order of diagnosis.

To study the temporal evolution of chronic conditions,
I have used directed graphs to represent the ”route” of
diseases throughout the Enroll-HD’s participant lives. Each
node represents a chronic condition and the amount of
participants having it, and each edge displays the average

Fig. 5: Prevalence of the different chronic conditions accord-
ing to their order of diagnosis. Morb no1: 4, 097 participants.
Morb no2: 1, 353 participants. Morb no3: 404 participants.
Morb no4: 87 participants. Morb no5: 18 participants. Morb
no6: 4 participants. Morb no7: 2 participants.
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Fig. 6: Directed graph for subset of participants with hypertension as their first identified chronic condition.

number of days between parent and child nodes. To allow
for a proper visualization of the graphs, only the top three
most common child nodes were represented after each
parent node, and the hierarchical level of the graph was
limited to three (excluding the root node). Figure 6 presents
the directed graph for patients with hypertension as their
first diagnosed condition.

5.3 Discussion
The directed graph shown in Figure 6 offers valuable in-
formation, but also has some limitations. First of all, it is
clear that there is an explicit over-representation of the top-4
first diagnosed diseases. This was already visible in Table 5,
but becomes more evident when almost all paths of the
presented graphs contain three, if not all, of the most preva-
lent chronic conditions (i.e., out of the 43 paths represented
only 9 have less than three instances of either hypertension,
dyslipidemia, osteoarthritis, or diabetes). However, this is
not exclusive to the Enroll-HD dataset. In Chapter ?? and
Chapter ??, hypertension, dyslipidemia, and diabetes have
also been three of the most common individual and co-
occurring chronic conditions. However, this is not unex-
pected, as these conditions share the same risk factors and
are themselves risk factors of each other. Having said that,
the discussion can be redirected to understanding if the
prevalence of the remaining conditions is inline with that of
the general population, or if it is related to under-reporting
caused by the EHR data used to phenotype conditions in
the Enroll-HD dataset (i.e., ICD-10 diagnostic codes and
medication). It is important to point out that the Enroll-
HD database was not created with the intent of correctly
phenotyping chronic conditions, but to accelerate progress
towards therapeutics for HD.

Secondly, the graph should not be generalised as a pre-
dictor for a person’s timeline of chronic conditions’ onsets.
Rather, they should be seen as an attempt to understand if
there is a visible pathway for the onset of certain diseases.
The number of days between the onset of different condi-
tions is also a topic that requires special attention, given

that some participants have several conditions identified at
the same moment in time. Additionally, the fact that the
Enroll-HD dataset portrays patients with HD and their fam-
ilies makes it difficult to derive any finding to the general
population.

6 CONCLUSIONS AND FUTURE WORK

The developed phenotyping tool can be easily adapted to
different datasets containing clinical narratives, enforcing
only minor alterations. The achieved experimental results
outperformed, in most cases, the literature methods found
for the same chronic conditions. Although the literature
reports and increased use of NLP methods for electronic
phenotyping, we could not find any study for some of the
selected chronic conditions (i.e., deafness and osteoarthritis),
which further motivates the study of NLP methods for
certain conditions. In these cases, the experimental results
were compared to those of methods that used structured
data for phenotyping, revealing the true usefulness of NLP
phenotyping methods. There are clear advantages of using
NLP methods when the structured data is lacking. If the
structured data is complete and well-reported, rule-based
methods are extremely effective at phenotyping patients,
while also being easier to implement. Considering disease
severity and stage, instead of only disease mentions, and
more vast input information, besides just clinical narratives,
are some future work considerations to be held.

Findings in the study of the impact of multimorbid-
ity showed that multimorbidity is significantly associated
with poor outcomes in COVID-19 infection. Further data
is needed to inform about the strength of this associa-
tion and about the significance of observed differences in
multimorbidity prevalence between infected patients and
the general population of Portugal. It is believed that data
collection problems may have occurred and influenced out-
come measurement. Future work should include validation
of the obtained results in a larger population. This could
be performed with a more recent version of the SINAVE
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dataset, if it were to be made available, since the COVID-19
infected Portuguese population had a near tenfold increased
since the last available version (i.e., all confirmed cases of
COVID-19 as of June 30, 2020) and will continue to increase.

The study of the temporal evolution of multimorbidity
showed interesting results, but these should be look at with
special attention. Out of the 12 studied chronic conditions,
4 were clearly present in most patient timelines. Namely,
hypertension, dyslipidemia, and diabetes proved to be con-
stantly associated with each other. This, however, could be
the result of lower prevalence of the remaining conditions.
Future work would dwell on using a bigger and more gen-
eral population, and complementing the patients’ timeline
with additional information, besides just chronic conditions
and the days between their onsets. This could be done
by integrating additional information such as, for example,
gender, age group, ethnicity, smoking status, and dietary
habits. Ultimately, the resulting graphs could be used to
train a model to predict a range of possible outcomes.

Overall, future work should focus on applying the pre-
sented studies to a single complete and longitudinal dataset,
which would allow for an integration between studies and,
consequently, a higher clinical significance of the results.
This single dataset should be available in the near future,
due to the Intelligent Care project.
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